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Examples of seasonal data

(a) Gasoline sales volume (b) Licor sales (in millions of $)

(c) New Housing Starts (d) Unemployment rate
Figure 1: Examples of (not seasonally adjusted) US time series data
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Introduction I

• Throughout the sample, the time series illustrated in Figure 1
exhibit specific patterns in a certain period of time, say during a
day, week, month or quarter that more a less repeat year after
year or, in a broader sense, after a fixed time interval.

• This periodic behaviour is very common in time series and is
denominated as seasonality.

• This seasonal component may be present when we have
intra-annual data for our time series of interest. For example, our
time series sample has quarterly, monthly, weekly or even daily
frequency.

• There are many and strong motives to believe that most
economic time series have a seasonal component:

1. The consumption of gasoline rises during Summer due increased
travelling by automobile;

2. The international airline prices increase in Summer due to the
holiday season;

3. The electricity consumption rises during some periods of the
Summer and Winter to control the building’s temperature;
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Introduction II

4. The private consumption increases in November and December
due to Christmas season;

5. Construction activity and jobs decrease in Winter due to obstacles
posed by cold, wind and rain.

6. The production of the agricultural goods strongly depends on the
climate condition. Consequently, it has a strong seasonal
component.

7. . . .

• These examples show that seasonality may have many different
possible manifestations in a given time series.

• Naturally, time series reacts to these different possible seasonal
patterns by proposing different modelling strategies for the
seasonal component.

• For macro/financial data, the choice of the appropriate modelling
technique depends if we consider the seasonality as:

1. Deterministic Seasonality
2. Stochastic Seasonality
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Deterministic Seasonality I

• Deterministic Seasonality - assumes that the seasonal
flutuations are more a less equal/similar year after year. The
mean of one season may be different from another season. But
year after year the pattern roughly repeats itself.

• A very extreme example is the sales of Chrismas trees which we
expect to have a very similar pattern year by year, independently
of the economic conditions.

• For example, with monthly data we have:

E(Xt ) =


µ1, if month=January
µ2, if month=February
...
µ12, if month=December
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Deterministic Seasonality II
• To allow for a different mean in each month we augment the

econometric model with a dummy variable for each month:

D1,t =

{
1, if month=January
0, otherwise

D2,t =

{
1, if month=February
0, otherwise

. . . . . . D12,t =

{
1, if month=December
0, otherwise

• For a very simple and unrealistic model with no serial correlation
we have:

Xt =
12∑

s=1

µsDs,t + ut ,ut
w.n.∼

(
0, σ2

u
)

• For an ARMA(p,q) model we have:

Xt =
12∑

s=1

µsDs,t + ut , φ (L) ut = θ (L) εt , εt
w.n.∼

(
0, σ2

ε

)
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Stochastic Seasonality I

• The most standard line of thought is to consider seasonality as
stochastic. Here, we observe seasonal time persistence but the
seasonal patterns change over time.

• For example, tourism expenditures are seasonal but also shift
according to the disposable income that depends on the
business cycle.

• In this case, we need a different approach to model the
seasonality component of the time series of interest.

• A possible path is to use automatic procedures to remove the
seasonality component. The most popular are the TramoSeats
and Census X12-ARIMA (implementable in EViews in Proc→
Seasonal adjustment). For more details consult, for example,
http://www.census.gov/srd/www/x12a/ or EViews manual.

• Then we apply the standard Box-Jenkins methodology to fit an
ARIMA model to the already seasonally adjusted data.
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Stochastic Seasonality II
• However, there are two main disadvantages with this approach:

(a) Many times, not all seasonal effects are removed with these
automatic procedures.

(b) Automatic procedures are not efficient. As argued by Bell
and Hilmer(1984), it is more efficient to analyse and model
jointly the seasonal and nonseasonal components of the
time series of interest.

• The more efficient approach advocated in (b) is the one followed
by the SARIMA class of models. We study in detail this models
in this group of slides.

• The most general form of the SARIMA class models the time
dependence according to two different dimensions:

1. Nonseasonal dependence - relationship between observations for
successive “seasons" (months, quarters,. . .) in a particular year;

2. Seasonal dependence - relationship between the observations for
the same “season" (month, quarter,. . .) in successive years;
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Stochastic Seasonality III

• Examples of pure seasonal models:
1. For quarterly data:

Xt = ΦXt−4 + εt , εt
w.n.∼ (0, σ2

ε)

Xt = εt −Θεt−4, εt
w.n.∼ (0, σ2

ε)

2. For monthly data:

Xt = ΦXt−12 + εt , εt
w.n.∼ (0, σ2

ε)

Xt = εt −Θεt−12, εt
w.n.∼ (0, σ2

ε)
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Stochastic Seasonality IV

• Examples of (not pure) seasonal models:
1. For quarterly data:

Xt = φXt−1 + ΦXt−4 + εt , εt
w.n.∼ (0, σ2

ε)

Xt = εt − θεt−1 −Θεt−4, εt
w.n.∼ (0, σ2

ε)

2. For monthly data:

Xt = φXt−1 + ΦXt−12 + εt , εt
w.n.∼ (0, σ2

ε)

Xt = εt − θεt−1 −Θεt−12, εt
w.n.∼ (0, σ2

ε)
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Stochastic Seasonality V

• The model building procedure for the SARIMA class follows the
same steps as the (non seasonal) ARIMA. Recall that the
Box-Jenkins methodological principles are:

1. Tentative identification - Start by taking (seasonal and
nonseasonal) first-differences to stationarize the time series if the
time series is non stationary both at seasonal and non seasonal
frequencies. As a practical matter we take, at most, one seasonal
and one nonseasonal difference (in very rare occasions we may
use two). After this process, examine carefully the SACF and
SPACF and select different candidate seasonal ARMA models that
are compatible with the SACF/SPACF.

2. Estimation of the SARIMA model
3. Diagnostic checking (residuals)

• However, the use of the SACF and SPACF in the tentative
idenfication stage is more complicated with seasonal time series.
This is due to the interaction between the seasonal and the
nonseasonal ARMA components.
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Stochastic Seasonality VI

• Throughout the next slides we present the main theoretical
properties for the most important SARIMA models. The
knowledge of these properties is very useful for interpretation
and for the tentative identification stage.

• We illustrate the applicability of these results with the application
of the Box-Jenkins methodology to a real dataset with a clear
seasonal component.
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Seasonal Moving Average process SMA(Q)S

• The Seasonal Moving Average process SMA(Q)S is defined by
the following equation:

Xt = Θ0 + εt −Θ1εt−S −Θ2εt−2S − . . .−ΘQεt−QS, εt
w.n.∼

(
0, σ2

ε

)
• Using the lag operator, L, this model can rewritten in a more

simplified form as:

Xt = Θ0 + Θ(LS)εt

where Θ(LS) = 1−Θ1LS −Θ2L2S − . . .−ΘQLQS.
• Xt is invertible if the (inverse) roots of the MA polynomial, Θ(LS)

are outside (inside) the unit circle.
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SMA(1)4 process
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SMA(1)12 process
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SMA(2)4 process
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SMA(2)12 process
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Seasonal Autoregressive process SAR(P)S

• The Seasonal Autoregressive model SAR(P)S is defined by the
following equation:

Xt = Φ0 + Φ1Xt−S + Φ2Xt−2S + . . .+ ΦPXt−PS + εt , εt
w.n.∼

(
0, σ2

ε

)
• Using the lag operator, L, this model can be written in a more

compact form as:

Φ(LS)Xt = Φ0 + εt

where Φ(LS) = 1− Φ1LS − Φ2L2S − . . .− ΦPLPS.
• Xt is stationary if the (inverse) roots of the AR polynomial,

Φ(LS), are outside (inside) the unit circle.
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SAR(1)4 process
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SAR(1)12 process
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SAR(2)4 process
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SAR(2)12 process
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Seasonal Autoregressive and Moving Average
process SARMA(P,Q)S

• The Seasonal Autoregressive and Moving Average process
SARMA(P,Q)S is defined by the following equation:

Xt = Φ0 + Φ1Xt−S + . . .+ ΦPXt−PS + εt −Θ1εt−S − . . .−ΘQεt−QS

where εt
w.n.∼

(
0, σ2

ε

)
.

• With the lag operator, L, this model can be rewritten in a more
compact form:

Φ
(

LS
)

Xt = Φ0 + Θ
(

LS
)
εt

where:

Φ(LS) = 1− Φ1LS − Φ2L2S − . . .− ΦPLPS

Θ(LS) = 1−Θ1LS −Θ2L2S − . . .−ΘQLQS

• Xt is stationary if the (inverse) roots of the AR polynomial,
Φ(LS), are outside (inside) the unit circle.

• Xt is invertible if the (inverse) roots of the MA polynomial, Θ(LS),
are outside (inside) the unit circle.
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SARMA(1,1)4 process

24/59



SARMA(1,1)12 process
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Seasonal Autoregressive, Integrated and Moving
Average process SARIMA(P,D,Q)S

• The seasonal autoregressive, integrated and moving Average
process SARIMA(P,D,Q)S is defined by the following equation:

∆D
S Xt = Φ0 + Φ1∆D

S Xt−S + . . .+ Φp∆S
12Xt−PS + εt −Θ1εt−S − . . .−ΘQεt−QS

where ∆D
S =

(
1− LS

)D
and εt

w.n.∼
(
0, σ2

ε

)
.

• Using the lag operator, L, this model can be rewriten in a more
compact form as:

Φ
(

LS
)

∆D
SXt = Φ0 + Θ

(
LS
)
εt

where:

Φ(LS) = 1− Φ1LS − Φ2L2S − . . .− ΦPLPS

Θ(LS) = 1−Θ1LS −Θ2L2S − . . .−ΘQLQS
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SARIMA(1,1,0)12 process
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General multiplicative model
SARIMA(p,d,q)× (P,D,Q)S I

• The general multiplicative model SARIMA(p,d,q)× (P,D,Q)S is
defined by the following equation using the Lag operator:

φ (L) Φ(LS)∆d ∆D
SXt = Φ0 + θ (L) Θ(LS)εt , εt

w.n.∼
(
0, σ2

ε

)
where:

φ(L) = 1− φ1L− φ2L2 − . . .− φpLp

θ(L) = 1− θ1L− θ2L2 − . . .− θqLq

Φ(LS) = 1− Φ1LS − Φ2L2S − . . .− ΦPLPS

Θ(LS) = 1−Θ1LS −Θ2L2S − . . .−ΘQLQS

and the (inverse) roots of the polynomials φ(L) and Φ(LS) are
outside (inside) the unit circle or, in other words, ∆d ∆D

SXt is
stationary.
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General multiplicative model
SARIMA(p,d,q)× (P,D,Q)S II

• To ease the understanding of the general multiplicative
specification the following examples (without constant) might be
useful:

1. SARIMA(1, 0, 0)× (1, 0, 0)12

(1− φL)
(

1− ΦL12
)

Xt = εt

⇔ Xt = φXt−1 + ΦXt−12 − φΦXt−13 + εt

2. SARIMA(0, 0, 1)× (0, 0, 1)12

Xt = (1− θL)
(

1−ΘL12
)
εt

⇔ Xt = εt − θεt−1 −Θεt−12 + θΘεt−13
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General multiplicative model
SARIMA(p,d,q)× (P,D,Q)S III

3. SARIMA(1, 0, 0)× (0, 0, 1)12

(1− φL) Xt =
(

1−ΘL12
)
εt

⇔ Xt = φXt−1 + εt −Θεt−12

4. SARIMA(0, 0, 1)× (1, 0, 0)12(
1− ΦL12

)
Xt = (1− θL) εt

⇔ Xt = ΦXt−12 + εt − θεt−1
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SACF/PACF of a SARIMA(1,0,0)× (1,0,0)12

The SACF/SPACF is compatible with an AR model with both the seasonal
and nonseasonal part: we find the most relevant spikes in the SPACF at lags
1 (nonseasonal) and 12 (seasonal) and it seems to cut off after the lag 12.
The SACF decays but it seems to be infinite in extent with no explicit cut off.
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SACF/PACF of a SARIMA(0,0,1)× (0,0,1)12

The SACF/SPACF is compatible with an MA model with both the seasonal
and nonseasonal part: we find the most relevant spikes in the SACF at lags 1
(nonseasonal) and 12 (seasonal) and it seems to cut off after the lag 12. The
SPACF displays relatively high spikes even for high lags.
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SACF/PACF of a SARIMA(1,0,0)× (0,0,1)12

Both the SACF and SPACF are apparently infinite in extent with no explicit
cutoff. Thus, we may suspect of a model with both the MA and AR parts. The
explicit form should be done by trying more parsimonious models and the
best model should be selected according to the Box-Jenkins principles. 33/59



SACF/SPACF of SARIMA(0,0,1)× (1,0,0)12

According to the SPACF/SACF it seems that we have a pure AR model such
as SARIMA(1, 0, 0)× (1, 0, 0)12. However, the time series was simulated
according to a SARIMA(0, 0, 1)× (1, 0, 0)12. This case illustrates the
difficulties of tentative identification and how important is to try different
models and select the best fit according to Box-Jenkins methodology.
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EXERCISE

• In this exercise we use monthly
data about the total number of
international airline passengers (in
thousands of passengers) in the
U.S. during the period
01/1949-12/1960, AIRLINE. Wf1.
Answer the following questions:
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EXERCISE I
(a) Sketch the plot of the series. What do you

conclude regarding stationarity and seasonality?
Do you think it is necessary to apply any
transformation?

(b) Sketch the plot and the correlogram of the
transformed series. What do you conclude?

(c) Would you apply another transformation to the
series? Why? If your answer is affirmative,
comment the results obtained for the new
transformed series.

(d) Sketch the plot and the correlogram of the series
∆2log(Xt). What do you conclude?
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EXERCISE II
(e) Sketch the correlogram of the series ∆12∆log(Xt).

What do you conclude?

(f) Remove the seasonal component from the series
∆log(Xt) using TramoSeats and Census X12.
Sketch the plot and the correlogram of the series
of the seasonally adjusted series. What do you
conclude?

(g) Apply the Box-Jenkins methodology to select the
model(s) of the class SARIMA(p,d,q)× (P,D,Q)S
that best fit the data. Recall that the multiplicative
model SARIMA(p,d,q)× (P,D,Q)S is defined by
the equation:

φ (L) Φ(LS)∆d ∆D
SXt = θ (L) Θ(LS)εt , εt

w .n.∼
(
0, σ2

ε

)
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EXERCISE III

Examine carefully the residual of the proposed
model(s).

(h) Estimate the model without the last 12
observations and make dynamic and static
forecasts for 1960:01 until 1960:12.
Compare your forecasts with the realized values.
Draw a time series plot with the realized values,
point and interval forecasts.
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(a) Sketch the plot of the series. What do you
conclude regarding stationarity and seasonality?
Do you think it is necessary to apply any
transformation?
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Transformation: log(Xt) I

• From the plot it is clear that the time series
possesses a trend and a seasonal pattern
with a big spike occurring during Summer
and a smaller one during the Spring Break.

• We also see that the variance is not constant,
in particular, the series is more volatile in the
second half of the sample. We try to stabilize
the variance using the log transformation.
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(b) Sketch the plot and the correlogram of the
transformed series. What do you conclude?

The transformed series continues to display a trending and seasonal
pattern.
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SACF/SPACF of log(Xt)

The SACF decays very slowly confirming the nonstationarity of the
series. The presence of the nonseasonal unit root makes it
impossible to obtain any information from the SACF regarding the
seasonal pattern. 42/59



(c) Would you apply another transformation to the
series? Why? If your answer is affirmative,
comment the results obtained for the new
transformed series.
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Transformation: ∆log(Xt)

• We take first differences to eliminate the non
seasonal unit root from the log(airline)
series.

• The SACF of ∆log(airline) produces a very
clear seasonal autocorrelation pattern with
very large positive autocorrelations at the
seasonal frequencies (lag 12, 24, 36,. . .) with
lower but still relevant autocorrelations at the
“neighbour” lags.

• Moreover we observe a slow decline of the
seasonal autocorrelations. This implies that
the first difference was not sufficient to
stationarize the series.
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(d) Sketch the plot and the correlogram of the series
∆2log(Xt). What do you conclude?
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Transformation: ∆2log(Xt)?
• We try to stationarize the time series by

taking second differences to the series. large
positive autocorrelations at the seasonal
frequencies (lag 12, 24, 36,. . .) with lower but
still relevant autocorrelations at the
“neighbour” lags.

• This filter was clearly unsuccessful as we
continue to have large positive seasonal
autocorrelations that decay very slowly. Any
alternative?

• The slow decline of the SACF at the
seasonal frequencies indicates seasonal
nonstationarity in the data: s = 12 in this
case since we are using monthly data.

• The appropriate filter to deal with a seasonal
unit root is to use seasonal differencing
∆12 = 1− L12.
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(e) Sketch the correlogram of the series ∆12∆log(Xt).
What do you conclude?
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Transformation: ∆12∆log(Xt)

• Given what we exposed in the answer to the
last question we apply seasonal differencing,
∆12.

• Now we are able to analyse the SACF/PACF
of the transformed series, ∆12∆log(Xt), and
choose the most adequate SARIMA model.

• It is important to realize that the pattern of
the SACF/SPACF of a seasonal series such
as is much harder to interpret than a
nonseasonal series.
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(f) Remove the seasonal component from the series
∆log(Xt) using TramoSeats and Census X12.
Sketch the plot and the correlogram of the series
of the seasonally adjusted series. What do you
conclude?

Figure 2: Plot and SACF/SPACF of the series ∆log(Xt) with the Census X12 procedure
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Figure 3: Plot and SACF/SPACF of the series ∆log(Xt) with the TramoSeats procedure
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(g) Apply the Box-Jenkins methodology to select the
model(s) of the class SARIMA(p,d,q)× (P,D,Q)S
that best fit the data. Recall that the multiplicative
model SARIMA(p,d,q)× (P,D,Q)S is defined by
the equation:

φ (L) Φ(LS)∆d ∆D
SXt = θ (L) Θ(LS)εt , εt

w .n.∼
(
0, σ2

ε

)
Examine carefully the residual of the proposed
model(s).
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Model estimation and selection of (P,Q) and (p,q)

(a) SARIMA(1, 1, 0) × (1, 1, 0)12 (b) SARIMA(1, 1, 0) × (0, 1, 1)12

(c) SARIMA(0, 1, 1) × (1, 1, 0)12 (d) SARIMA(0, 1, 1) × (0, 1, 1)12

Figure 4: Candidate SARIMA(p, d, q) × (P, D, Q)12 models
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Plot and SACF/SPACF of the residuals from the
candidate models

(a) SARIMA(1, 1, 0) × (1, 1, 0)12 (b) SARIMA(1, 1, 0) × (0, 1, 1)12

Figure 5: SACF/SPACF of the residuals from the candidate models
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SACF/SPACF of the residuals from the candidate
models

(a) SARIMA(0, 1, 1) × (1, 1, 0)12 (b) SARIMA(0, 1, 1) × (0, 1, 1)12

Figure 6: SACF/SPACF of the residuals from the candidate models
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(h) Estimate the model without the last 12
observations and make dynamic and static
forecasts for 1960:01 until 1960:12.
Compare your forecasts with the realized values.
Draw a time series plot with the realized values,
point and interval forecasts.
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Forecasting with SARIMA models

(a) Dynamic forecast (b) Static forecast

Figure 7: Forecasting with SARIMA models
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EXERCISE I

Choose a macroeconomic time series, either with
monthly or quarterly frequency, with a clear
stochastic seasonality pattern, and with a sample
period of at least 10 years (if monthly) or 30 years (if
quarterly). Now, disregard the last 12 observations of
the sample and solve the following questions:
(a) Construct the models from the SARIMA class that

better caracterize the dynamic properties of the
data (select at least 2 models). Justify your
choices in detail.

(b) Make a complete diagnostic checking to the
residuals.

57/59



EXERCISE II
(c) Acrescente dummies aos 2 modelos

apresentados, interpret your estimates of the
constant term and one of the dummies. Evaluate
the statistical significance of the coefficients.
Hint: The EViews command @seas may be useful.

(d) Use the two best models to construct dynamic
and static forecasts for the disregarded forecasts
with origin on the last observation used for model
estimation.

(e) For the 2 best models, compare your predictions
with the observed values. Represent the series
plot of the realized values and the forecasts.
Comment on your results.
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